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Collective rotations of asymmetrically deformed many-body 
systems: 11. Intrinsic symmetry effects 

Lucas F Lathouwerst 
Dienst Teoretische en Wiskundige Natuurkunde, University of Antwerp (RUCA),  
Groenenborgerlaan 17 1, 2020 Antwerp, Belgium 

Received 7 March 1983 

Abstract. The implications of intrinsic symmetries on the structure of rotational secular 
equations in the angular momentum projection formalism are studied for both the exact 
and approximate versions. The symmetry group of the rigid rotor, D 2 ,  is used to illustrate 
formal results. 

1. Introduction 

In paper I (Lathouwers and Deumens 1982) we developed an approximate angular 
momentum projection technique for asymmetrically deformed systems. The results 
obtained in I put angular momentum projection, as a means to insure rotational 
invariance, on a par with frame transformation theory (see e.g. Harter et  a1 1978). 
Indeed, although it is always possible to formally apply projection methods, approxi- 
mate rotational energy level expressions in terms of quantum numbers, moments of 
inertia, centrifugal distortion constants, . . . were available for axially symmetric sys- 
tems only (Peierls and Yoccoz 1957, Verhaar 1964). The Peierls-Yoccoz approach 
was generalised in I by showing that for any strongly deformed intrinsic state the 
rotational secular equation reduces in a natural way to a rigid rotor eigenvalue problem. 
Since strong deformation is a property which occurs for both rigid and non-rigid 
systems, a qualitative explanation was obtained for the appearance of rotor-like energy 
level patterns in a large variety of many-body systems (‘normal’ or semi-rigid 
molecules, flexible molecules, Van der Waals complexes, atomic nuclei,. . .). For a 
concise definition of the deformation of a wavefunction we refer to I. Here it suffices 
to say that if the overlap integral between a state and the one obtained from it by a 
non-infinitesimal rotation is vanishingly small it may be considered strongly deformed. 
It is easy to convince oneself that both for semi-rigid molecules, in which nuclei are 
strongly localised near the equilibrium configuration, and for heavy nuclei, in which 
nucleons are very delocalised as constituents of a determinental wavefunction, the 
above criterion is satisfied. Finally, it should be noted that I also introduced a quantal 
inertia tensor expressed in terms of the full microscopic Hamiltonian, total angular 
momentum components and the intrinsic wavefunction. The quantal inertia tensor 
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of Chemistry, Harvard University, Oxford Street 12, Cambridge, Massachusetts 02138, USA. Research 
Associate at the Nationaal Fonds voor Wetenschappelijk Onderzoek, Belgium. 
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turns out to be the proper concept for the quantitative description of collective 
rotational spectra since its eigenvalues are the moments of inertia appeafing in the 
effective rigid rotor matrix equation. It, therefore, becomes possible to compute 
moments of inertia for systems that do not posess a preferred particle configuration. 

Frequently intrinsic functions are derived from model Hamiltonians which have 
their proper symmetry groups e.g., molecular point groups, permutational sym- 
metries, . . , . In this paper we will study the effect of such intrinsic symmetries on the 
projection operator treatment of overall rotation symmetry. It will be shown that if 
the invariance group of the intrinsic state contains rotations, linear dependencies 
among the projected matrix elements arise. Furthermore, we will verify that approxi- 
mate angular momentum projection, as described in I, conserves the effects of intrinsic 
symmetry, i.e., the same relationships exist between exact and approximate forms of 
the projected matrix elements. The point group D2,  of special interest in both 
molecular (Kroto 1975) and nuclear physics (Bohr and Mottelson 1975), will serve 
to illustrate both the exact proof and the approximate version of the intrinsic symmetry 
effects. 

Although some of the results of this paper are well known it is hoped that their 
transparent derivation within the projection operator formalism will stimulate further 
use of this technique as applied to non-rigid systems for which it seems ideally suited. 

2. Symmetry properties of exactly projected matrix elements 

When the general theory of projection operators is applied to the three-dimensional 
rotation group one obtains the so-called angular momentum projection operators 

d R = J o  dcp! 0 s i n e d e ]  0 dy, %(RI =exp(-icpJ,) exp(-ieJ,) exp(-iyJ,) (2) 

DL~w=&AP, e, Y) = exp(-Mq)dLK(8) exp(-Xy) (3 ) 

where $22 (R) and DhK(R) are the rotation operators and rotation matrices expressed 
in terms of Euler angles R = (cp, 8, y ) .  The numerical factor (2J + 1) /8rr2  is the ratio 
of the dimension of the irreducible representation J and the group volume 87r2 =l dR. 
Formula ( 1 )  displays the general form of projection operators associated with a certain 
group if one observes that P ~ K  is the sum over the group of the group elements with 
the corresponding elements of the irreducible representations as coefficients. The 
usefulness of the P’MK lies in the fact that when applied to an arbitrary state x ( x )  
they generate, for each K ,  an eigenfunction of J 2  and J, with associated quantum 
numbers J and M. Therefore, the most general wavefunction consistent with rotational 
invariance that can be extracted from x ( x )  is 

The superposition coefficients of the various K components can be determined by 
minimising the energy of UJM(x)  which leads to the following matrix eigenvalue 
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problem (see e.g. Ring and Schuck 1980, MacDonald 1970) 

1 [HiL  - E J A ’ , ] ~ i  = O  
L 

(6) 

(7) 

2 J + 1  
H i L  = ( x l H P : ~ I x ) = g  d f l & . ( Q ) ( x I H g ( a ) l x )  

AL = ( x I P ~ L I x )  = 3 I d a D & ( a ) k l ~  (Wlx) .  2 J + l  

In the introduction we referred to ( 5 )  as the rotational secular equation since for each 
total angular momentum value J a manifold of 2 J + 1  rotational energy levels is 
obtained. 

Suppose now that there exists an intrinsic symmetry group of which some elements 
are pure rotations. Without loss of generality? we consider the case in which x ( x )  is 
invariant under a rotation 92 (no) in the sense that 

(8) 

In order to examine the implications of (8) we need some extra properties of angular 
momentum projection operators namely 

2 9 @o)x ( x  1 = rox  ( x  1 with lrol = 1. 

PiL.9’(aO)=C P ” d F M ( f l 0 ) .  (9) 
M 

P i L 9  (.no) = c ~ J d I L M ( . R o )  
M 

Although unfamiliar to most standard texts (see however Harter et a f  1978), these 
equations are easily proved using definition (1) and the properties of Wigner functions. 
They allow us immediately to write down the relationship between the projected 
matrix elements we are aiming for. Indeed, it follows from (8) and (9) that 

(10) 

if the intrinsic state is invariant under 3 (Cl,,). Clearly similar equations hold for the 
overlap matrix elements A’, although here and in the following we will not denote 
them explicitly. Thus both for H and A a projected matrix element is a linear 
combination of the elements of the same row with coefficients determined by the 
corresponding rotation matrix D J  (a,,). 

We illustrate the above formal expos6 for the group D2 which is believed to be a 
near exact intrinsic symmetry group for asymmetric top molecules and triaxial nuclei. 
It contains the identity and the rotations over 7~ around the three space fixed axes 
9 (T, Fk). The invariance property (8) can be written as 

HL = ro* C H ~ ~ D I L ~ ( I z ~ )  H L  = ro C H’LD’ ,L(~~)  
M M 

BZTTT, G ) x ( x )  =rkx(x)  (1 1) 
where r k  = *l. We now take into account various ways in which the % (T, ak)  can 
be written in the Euler form (2) as summarised in table 1. Substitution in (10) gives 
us the following results 

(12) 

(13) 

(14) 

J J  J J  J 

J + K  J J + L  J K + L  J 

H:K‘ = r x ( - )  H ~ - ~  = r x ( - )  H - ~ ~  = H - ~ - ~  

= r y ( - )  H ~ - ~  = r y ( - )  H . . ~  = (-1 H - ~ - ~  

H’, = rr ( - ) K ~ J K ,  = rr ( - ) L ~ L  = (--lK+“~iL. 
i If the intrinsic state is degenerate one should proceed as described in Laskowski and Lowdin (1972). 
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Table 1. Possible Euler angle combinations for D2 group elements. 

D2 element (q,  0, y )  combination 

These equations contain a number of redundancies due to the fact that e.g. 
9 (T, Cy)% (T, e;) = 9 (T, t?,.), . . . . The relevant implications of the D2 symmetry 
are the following. Clearly, according to (14), K and L must have the same parity 
which is determined by r , :  K and L must be even or odd depending on whether 
rz  = +1 or -1. Secondly (13) and the corresponding equalities for A i L  imply that the 
components of the eigenvectors of equation (5) must be such that 

(15) 

For a given intrinsic D 2  symmetry, i.e., a given set ( rx ,  r,,, r z ) ,  one therefore obtains a 
reduced number of existing rigid rotor energy levels (see table 2 ) .  These results are 
familiar from the Bohr-Mottelson approach to nuclear collective motion. However, 
their derivation within this framework is rendered dubious by the use of a redundant 
set of variables; a long-standing criticism of the collective model. We have shown 
here that a concise and transparent derivation can be given using the properties of 
angular momentum projection operators. 

J + K  I c i  = (-1 r ,c -K.  

Table 2. Number of existing rotational states for given total angular momentum J and 
D z  intrinsic quantum numbers (rx, ry, r z ) .  

J ri r\ Number of states 

i 
+ 
- 

f J + 1  
:J 

Even 

+ f ( J -  1) 
- f ( J+l )  

+ 
Odd 

- + i ( J  + 1) 
- f ( J+l )  

3. Symmetry properties of approximately projected matrix elements 

Here we investigate whether the symmetry properties derived in the previous para- 
graph remain valid or are modified by introducing approximations appropriate for 
strongly deformed intrinsic states. For this purpose we will adopt the following 
strategy. In I i t  was shown that infinitesimal rotations essentially determine the angular 
momentum projected matrix elements. Approximate expressions in terms of angular 
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momentum quantum numbers and components of the quantal inertia tensor were 
obtained. Clearly, if the intrinsic state is invariant under a rotation %((no), in the 
sense of (8), transformations near 93 ((no) will also contribute in the projection integrals, 
i.e., 

where the sum runs over all intrinsic symmetry elements. The symbol H&L [%(no)]  
indicates the contribution to H &  of the rotations infinitesimally close to 93 ((no). 

Specialising to the D z  group the above arguments imply that we must evaluate 
the contributions of rotations near the 93 (T,  e k )  into the integrals (6) and (7). Table 
3 gives the location of the group elements in terms the Euler angle 8 and the sum 
and difference angles cp + y  and cp - y .  Thus the relevant rotations are contained in 
the upper and lower slice of a parallelepiped with base O s c p ,  y C 2 r  and height 
0 ~ 8 s ~  (see figure l(a)) .  Within these slices the transformations near the D 2  
elements are distributed as indicated in figures 1(6) and l(c).  The approximate 
evaluation of the projected matrix elements now amounts to the computation of 

where the various contributions are given by the integrals over the corresponding 
regions indicated in figure 1. It will suffice to establish the relationship between the 
H L  [% (T,  F k ) ]  and H L  [l] since the latter have already been evaluated in I. 

Let us first consider transformations near 9 (T, FZ), From figure 2 one sees that 
if the original integration domain is cut at cp = T and the left-hand side translated 
over 277 in the q direction one obtains an arrangement which is topologically identical 
to the one for infinitesimal rotations. Due to periodicity this procedure does not affect 
the value of the integral. However, in order for the two regions to coincide, one has 

Table 3. Location of D z  group elements in the parallepiped 0 s cp. y s 277 and 0 s 0 s 77 

e f  

D2 element 0 v - Y  cp + Y  

I 

. . .. . . . . . .. ..... . . . . . . /D ..' 2n ~ 

* n  ..'. 

la 1 I b i  I C 1  

Figure 1. Location of D2 group elements in the parallelepiped 0 6 cp, y S 277 and 0 s 0 S W .  

Near 1 and near W ( T ,  P , )  rotations in open and shaded regions of ( 6 )  respectively. Near 
9 (77, iy) and near W (77, P,) rotations in open and shaded regions in (c ) respectively. 
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Figure 2. Integration domains relevant for the Figure 3. Integration domains relevant for the 
relationships between H k  [ 11 and Hk [W (T ,  tz ) ] .  relationships between H k  [ 11 and Hk [W (7, Cy)], 

HL[W((n, Cx)l. 

to translate the square 7r s cp s 37r, 0 s y s 2ir over -7r in the cp direction. This affects 
the integral by a phase factor which may be derived by considering the Q integration 
in the angular momentum projection. Indeed, the mathematics behind the above 
collage reads 

lozTdcp exp(Kcp). . . (,yl exp(-icp.fz), . . Ix) 

= dq exp(Xq) . . . (,yl exp(-icpJz) 

= IU2* dq’  exp(-irrK) exp(Xq ‘) . . . (x  

r 2 n  

= r Z ( - J K  J dq‘  exp(Xcp’). . . ( X I  exp(-icp’J,). . .Ix) 
0 

Evidently the same procedure may be applied to the y direction such that we conclude 

H : K ~  [g (7, e, )I = rz ( - ) K ~ i L  [ I ]  = rz ( - ~ H : K ~  [ I ]  = (--F + L ~ L  [ 13. (19) 

For rotations near %(T, Cy) and B(T, Cx) we observe that reflection with respect to 
the cp(y) axis followed by a translation over 27r in the y ( q )  direction yields the same 
situation in the (cp, y )  plane as the one for infinitesimal and near %(T, Fz) rotations. 
Figure 3 illustrates these operations. However, we still need an additional change of 
variables &= 7r - e to bring the upper slice of the parallelepiped into coincidence with 
the lower one. This results in a change in sign of one of the azimuthal quantum 
numbers and a phase factor. The explicit sequence of manipulations of the integrals 
is given in the appendix and proves that 

(20) 

(21) 

We are now in a position to evaluate the approximate form of the full matrix element 

HLLB(T, e Y ) ] = r y ( - )  J + K  N ~ - ~ [ ~ I = ~ ~ ( - ) ~ + ~ H J ~ [ ~ I =  J ( - ) K + L ~ f K - L [ l ]  
~ L , [ % ( r r ,  ~ ~ ) ] = r , ( - ) ~ ~ l K - ~ [ l ] = r ~ ( - )  J J  H - ~ [ I I = H ~ ~ - ~ [ ~ ] .  
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HJKL by summing the four contributions from the D2 group elements. Taking into 
account the relationships (19), (20) and (21) we obtain 

H L  =[I +~,(-)“](H:KL[~]+T~(-)’+~HJ_KL[~]) (22) 

H : ~  = [ I  +r,(-)L](~JKL[l]+ry(-)J+L~:-L[lI). (23) 

These approximate forms do indeed satisfy the exact symmetry relations (12), (13)  
and (14). We may, therefore, conclude that approximate angular momentum projec- 
tion conserves intrinsic symmetry effects. 

The graphical methods, used in this section, clearly show that the D2 symmetry 
effects arise from the interference between physically equivalent orientations of the 
intrinsic state. Indeed, summing over rotations near the D2 group elements yields 
results equivalent to those obtained from the general projection operator properties 
(9). 

4. Discussion 

We have demonstrated that for 0 2  intrinsic symmetries, the exact and approximate 
versions of angular momentum projection yield the same symmetry properties for the 
projected matrix elements. Their implications can be summarised by writing down 
the final wavefunctions taking account of (15), i.e., 

where the sum runs over even or odd K values only and consistent with rz = (-)“. 
This equation gives us the number of states denoted in table 2 corresponding to a 
given total angular momentum J and intrinsic quantum numbers r = ( rx ,  r,,, r z ) .  That 
number and the form (24) are independent of whether the coefficient c& are the 
solutions to the exact rotational secular equation ( 5 )  or the one corresponding to the 
approximate forms (22) and (23). 

Looking at equation (13) from a group-theoretical point of view it is important 
to observe that the final wavefunctions are linear combinations of angular momentum 
eigenstates P ~ ; Y ~ ( x )  which belong to the same irreducible representation of D2 as 
the intrinsic states , y r ( x ) .  We have emphasised this by assigning to both q J M ( x )  and 
x ( x )  the label r ( rx ,  r y ,  r z ) .  This statement is, in the present case, almost trivial because 
the intrinsic symmetry group D2 is a subgroup of the overall symmetry group R 3  and 
has, in addition, only one-dimensional irreducible representations. The importance 
of the above observation lies in the fact that it hints to us which group-theoretical 
concepts are involved in treating the general situation in which a subgroup of both 
the intrinsic symmetry group and the overall symmetry groupt is to be considered. 
Indeed, what we have gone through in this paper is nothing but an application of the 
theory of induced representations (Mackey 1968) which provides the general 
framework for problems of the type treated here. The present approach using 
projection operators and an explicit rotation group paranietrisation in terms of Euler 
angles is however to be preferred at an introductory and practical level. 

i In the absence of external fields one may want to include (in addition to rotations) translations, parity 
and time invariance, permutations of identical particles, . . . . 
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In addition to the question considered in the previous paragraphs, i.e., which 
wavefunctions are consistent with a given intrinsic symmetry, one should also ask 
oneself how the intrinsic symmetry affects the position of the corresponding energy 
levels. From (22) and (23) it is clear that the spectrum can no longer be that of the 
rigid rotor shown in I to be equivalent to the secular equations for HiL[l] and A i L [ l ] .  
Indeed the latter matrix e!ements are modified by contributions of the form 
r y ( - )  KHz~,rL[ l ]  and (-)J+KALK,+L. Due to the presence of the sign factor ( - ) J  the 
resulting energy shifts will be different for even or odd J values. For axially symmetric 
systems these so-called odd-even shifts have been treated by Verhaar (1963). 
However, it can be seen that these effects are mixed with centrifugal distortion 
corrections which appear as higher-order expansions beyond the Gaussian overlap 
and quadratic approximations considered in I. Since this is the topic of the next paper 
in this series we will consider generalised odd-even shifts and centrifugal distortions 
simultaneously in a future publication. 

J +k 
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Corrigendum to Paper I 

Lathouwers L F and Deumens E 1982 J. Phys. A: Math. Gen. 15 2785-99 

On page 2785, line four of the Introduction, ‘quantitative’ should read ‘qualitative’. 

In equation (19) on page 2789, the term on the RHS of the first equation should end 
as e+ifiJz e-ieJ,. 

In figure 1 a broken line from (0,27r) to (27r, 0) is missing. 

In equation (40) x and y should be interchanged. 

On page 2799 in line eight & ( t )  should be replaced by P: ( t ) .  

Appendix 

We derive here the first equation (20) as an illustration of the mathematical manipula- 
tions behind the graphical approach used in 9 3. In order to shorten the expressions 
we only denote the 6 and y integrations. One can then easily verify that 

r “  r 2 m  

sin e d e  J dy &. (e )  exp(-iLy)(XI . . . exp(-ieJ,) exp(-iyJz)IX) 
0 0 
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x exp(ily’)(xyl . . . exp(-i8‘JY) exp(-iy’J,)I,y) 

where the last line follows from 

(xi exp(- id,)  exp(ie’J,) exp(-iy‘J,)Ix) 

= (xi e x p ( i d , )  exp(-iqJz) exp(- id , )  exp(ie’J,) 

= r : ( x /  exp(-iqJ,) exp(-ie‘J,) exp(-iy’J,)IX) 

= (x I exp(- idZ)  exp(-ie’J,) exp(-iy’J,)/x). 

x exp(i.nJ,) exp(-iy’J,) exp(-id,)IX) 

References 

Bohr A and Mottelson B 1975 Nuclear Structure vol I1 (Reading, Mass: Benjamin) 
Harter W G et a1 1978 Rev. Mod. Phys. 50 37 
Kroto H W 1975 Molecular Rotation Spectra (New York: Wiley) 
Laskowski B and Lowdin P 0 1972 Chem. Phys. Lett. 16 1 
Lathouwers L and Deumens E 1982 J.  Phys. A: Math. Gen. 15 2785 
MacDonald N 1970 Adu. Phys. 19 371 
Mackey G W 1968 Induced Representations of Groups and Quantum Mechanics (New York: Benjamin) 
Peierls R E and Yoccoz J 1957 Proc. Phys. Soc. A70 381 
Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer) 
Vehaar B 1963 Nucl. Phys. 45 129 
- 1964 Nucl. Phys. 54 641 


